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ASYMPTOTIC LAMINAR WAKES* 

N.I. YAVORSKII 

The multipole approach, developed in the theory of laminar 
non-selfsimilar submerged streams /l, 2/, is applied to the problem of 
the uniform motion of a body in a space flooded with an incompressible 
viscous liquid. The zeroth approximation is an exact solution of the 
complete equations of hydrodynamics which is valid in a neighbourhood 
of the point at infinity and represents the exact asymptotic structure 
of the solution of the boundary-value problem. One such solution for a 
non-selfsimilar submerged stream is the Landau solution /3/. In the 
context of the laminar wake behind a body, this solution corresponds to 
prescribing a constantvelocity v, and pressure p0 at infinity (the 
body is assumed to be at rest). According to the multipole approach 
/l, 21, the basis for the generalized multipole expansion is the 
solution of the Navier-Stokes equations, linearized in terms of this 
exact asymptotic solution. 

Expressing the solution of the complete Navier-Stokes equations in the neighbourhood of 
the point at infinity as 

v = r0 + W, p = p. + q. W = 0 (Iv0 1) (0.1) 

we obtain equations for the perturbations W.Q (with the density of the liquid assumed equal 
to unity): 

VAW-(v,,C)w-Vq=(w,V)w, divw=O 

w-w*, XEz(W*=\~*(S)-\~g, SEX) (0.8) 

where W* is the prescribed velocity on the surface C of the body. 
To a first approximation, since w=O(u,), we can neglect the non-linear term on the right 

of (0.2), thus obtaining the well-known Oseen equations /4/: 

YAW,, - (vO, V)w, - Vq = 0, div w. = 0 (0.3) 

If the general solution of Eqs.(0.3) is known, one can construct a solution satisfying 
the prescribed boundary conditions on the surface of the body. Then, by successive approxi- 
mations to the non-linear term in (0.2), one obtains a corresponding asymptotic expansion at 
infinity. 

Oseen's fundamental solution of Eqs.(0.3) took the form of a "velocity tensor" A,,@-ry) 
and pressure vector er(x- y) /5/: 

aaal 
Eij = 'ijAm_ m 1 ei 2 - + [vAa- (vO, V@)] (0.4) 

I I 
1 - e-n 

@ =- anov q-+% 2vo=lv,~, S-~x-yl--_n,.(x--y), no=* 
; 

The solution of Oseen's problem (0.3) with the velocity w0 = w*(e) prescribed on the 
surface of the body may be determined from a system of Fredholm integral equations /6, 7/, 
derivable with the aid of the fundamental solution (0.4). 

In the context of the full Navier-Stokes equations, existence 18, 9/ and uniqueness /8/ 
theorems in the flow problem have been established for Reynolds numbers me= C,r,j~ (rO being 
the characteristic dimension of the body) in a certain neighbourhood of zero: Re = (0, Re.1, 
Re, > 0. An existence theorem has been proved for generalized solutions, with no restriction 
on the Reynolds number, for steady.flow around n bodies, on the assumption that the total out- 
flux from the submerged bodies is zero. The behaviour of the solution as 1x1= T-.~ is of 
interest. It has been shown /8/ that if ) w (P) 1 < CrP, a > 1/z, c > 0 , then at some distance 
from the body 
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~1 (x) = uoi + 4ii (x) + bei Cd + oi (4 (0.5) 

0, (x) = 0 (r-‘2” In (or)). (2,. b = const 

Formally speaking, the expansion (0.5) involves no restriction on the Reynolds number, 
the only essential condition being that r>> 'b. It has been shown /lo/ that the representation 
(0.5) holds for any flow situation in which the Dirichlet integral of the fields " (x)9 P 6) 

is finite. Now, in view of the fact that thanks to the existence theorems the Dirichlet 
integral is bounded, one can assume that (0.5) holds for any steady flow. Further estimates 
have been obtained /ll/: 

CJ1 (x) = V'il'l (x) + 0 (r-2 1nS (or)), u;'. = 0 (r-'/z In (or)) (0.6) 

It will be shown in this paper that the first terms of the asymptotic expansion of the 
velocity and pressure field may be expressed in terms of the exact conservation integrals: 
momentum flux, mass flux, flux of angular momentum and higher moments of these quantities. 
Explicit expressions will be obtained for the second and third terms of the expansion, which 
are determined by these quantities. Further terms of the expansion are not so universal and 
depend on the specific formulation of the boundary-value problem for the flow. A previous 
asymptotic expansion of the vorticity /11/ is refined and an estimate is obtained for the 
remainder term. 

1. We start from certain integral relations which can be obtained from the Navier-Stokes 
Eqs.(O.l), (0.2) by inverting the Oseen operator (0.3); these relations may be written as 
follows: 

q.(x) = s u’pj $- E,, (x - y) d3y ,- 
k 

” 

s (Et, (X - y)(VojV~; - njk) _i- ‘UjTijk (X - y)) ?L,dS 
I 

4 (x) = 5 wiwj +- ej (x - y) d3y A 

b’ 

(1.1) 

(1.2) 

i 
a% Tijk = v dr. + 2) -ejsjk, Tj, = Y -L + 2 - e*6jx 

h 
( ::, ::, j 

i 

aui au, 
IIij = Uiuj + P&j- y as, + F 

j i 

(1.3) 

where II, is the momentum flux tensor, E is the volume occupied by the liquid, C is the 
surface of the body, n is the outward normal, Eij(x), ei(x), e* (x) = (v,,C(l/r)) is a fundamental 
solution of Oseen's problem (0.4). 

The integral representation (l.l)-(1.3) forms the basis for the multipole approach 
proposed here. 

The volume integrals in (l.l), (1.2) exhibit the following asymptotic structure as r+ a, 
/S/: 

Ii(x)= 5 I”<w~% Eij(X-y)d3y = CI(?"ln(o~)) 
r' 

Z(X)= 5 W$‘k &ej(X-y)d3y = 0(re31n (or)) 
i n 

while that of the surface integrals is 

G(x) = swu(x-YY)( “o Uk - nfk) + wjTijk 6 -Y)) @S = 0 (l/r) J 
x 

zi (4 = s (ef (x - Y)( UOjuk - njk) + w,T jk (X - Y)) n&S = 0 (l/r’) 
): 

(1.4) 

(1.5) 

Since the body is bounded and may be enclosed in a sphere 9, of radius rO, it follows 
that for sufficiently large ).=1x1, when IYI < roI the functions E,j, ej in the inte- 
grands of (1.5) may be expanded in absolutely convergent Taylor series. Substituting these 
series into (1.5), we obtain (summation over n from 1 to m) 

KI (X) = ajEfj (XI f %k, k, 
an-q, (4 

al az 

k,’ . kn 
+ bei (4 + Xba, k, az 

ane, (a 

k,’ ’ ’ 
a2 

k, 

(1.6) 
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be* (4 + y bk, .,. k, A; 
d k,. . . “n 

Qjk, . k” = + f [(“Ol”l - n,d nIYk, - n”(WPk, + Wk,S)l Yk, 

(-l)“+’ 
br, k, == 7 $ vwk,. , . yk,dS 

The quantities ai, b may be expressed as 
a =Qv,-J, b = -Q 

(1.7) 

(‘4 
YkndS 

(W 

where J is the total momentum flux from the body and Q is the ouflow of liquid from the body. 
It can be shown tht the expansions (1.6), (1.7) are convergent, since W, and II,, are 

bounded on the surface of the body. Note that the series (1.6), (1.7) are constructed in 
such a way that each successive term in the sums is small to a higher order in i/r than its 
predecessor. This may be proved on the basis of the asymptotic estimates V"E,, = 0 (r-1-"/2), 
Ve, = 0 (r-n-2). 

In view of the analogy with the Laplace equation, we call (1.6) a multipole expansion of 
the solution of the steady flow problem for the body. In that case the quantities %,...k,, 

br,...kn are the strengths of the appropriate n-th-order multipoles. It should be mentioned 

that the expansion we have constructed is not a simple corollary of Oseen's equations, as 
might be expected for a solution of the Navier-Stokes equations at r> rO. The coefficients 
of the expansions (1.8) are non-linear functions of the velocity. In order to determine 
%...k,, therefore, we need a solution of the entire non-linear boundary-value problem of 
the flow. 

Taking into account that the volume integrals (1.4) become asymptotically small compared 
with the surface integrals (1.5) as r-00, we can construct a full expansion of the solution 
of the problem by successive approximations to the non-linearity involved in the volume 
integrals I, (x), I (x). A natural choice for the zeroth approximation is 

w"(x) = K(x), q’(x) = K(x) (1.10) 

i.e., the additive part of the full solution (l.l), (1.2) corresponding to the surface in- 
tegrals. This is the approach underlying the existence and uniqueness proofs in /a/, where 
analogous approximations are shown to converge to a solution of the boundary-value problem if 
the Reynolds number Re is sufficiently small. Thus, this path leads to the construction of 
an exact solution of the Navier-Stokes equation for the flow problem as a multipole expansion 
at infinity. 

2. Let us assume that the solution WOW, qO(x) is known. This is equivalent to 
specification of all the multipole strengths a,r,.,,r,, bk,,..r (a denumerable number 

l 

stants) . Eqs.Cl.3) and (1.4) may be written, taking (1.7) and (1.9) into account 

w{(x) = wi"(x) + 
i 
W& E,,(x -y)+/ 

L 

q(x) = g"(x) + ~++ej(x-y)d?/ 

of con- 

as follows: 

(2.1) 

The first equation of (2.1) is autonomous, and it will therefore suffice to apply success- 
ive approximations to this equation only, obtaining a system of recurrence relations 

-y)d’y, n=0,1,2,... 

(2.2), 

It should be noted that the construction of a solution in this form does not yet yield 
a sequence of terms of increasing order with respect to i/r ; hence different approach is 
necessary to construct the expansion at infinity in closed form. 
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Since the integral operators in (2.1) are convolutions, it is clearly convenient to 
change to Fourier transforms. Let W,(k). P(k), A,,(k) denote the Fourier transforms of 

WI (x)9 g(x), E,,(x), respectively. Putting w+(x)= 0 for x E B”, where B is the volume 
occupied by the body and B” its interior, we have 

The Fourier transforms of Eqs.(2.1) are 

WI(~) = WI’(~) - iAt, (k) k,B,, (k) 
P (k) = P" (k) - k,k,k-%,,,,, (k) 

(2.3) 

B,,(k) = 5 e'k.xwc(x)Wj(x)d8z = (2n))' S W,(p) W,(k- p) dsp 
EIP X’ 

This system of equations is considerably simpler than the original system (2.1), though 
still involving integral equations. The functions IV; (k).P’(k) are given by 

WI” (k) = AlI (k) M, (k) - iklk-*A! (k) 

PO (k) = -iklk-‘Ml (k) - iklvolk-lM (k) 
(2.4) 

where M,(k), M(k) are analytic functions in a neighbourhood of k = 0 : 

M, 04 = 01 T njl (- i)” ap, i,kl,. . . k,,, 

M(k) = b -t ji (- Vh,... r,&,...kl,, 
n=l 

(2.5) 

Comparing the structure of expansions (1.3), (1.7) with (2.4) and (2.5), we note that 
the terms in each are of corresponding orders of magnitude as r-+00 and as k-0. Thus, 
expanding the tensor B,,(k)‘ in series as k-+0 in (2.3) will produce the necessary full 
multipole expansion of the solution in the Fourier transform space. 

According to a theorem of Finn /12/, the kinetic energy of the perturbed motion, i.e., 
the kinetic energy determined using v(x). is infinite. This means that Bh(O)= CO. Con- 
sequently the tensor B,,(k) is a non-analytic function at k= 0. Nevertheless, one can con- 
struct the required expansion of B,,(k) as k-m, by isolating the singularity. The type 
of singularity can be determined by using the successive approximations (2.2), having first 
changed to their Fourier transforms: 

WY'(k) - ~4,~ (k) k&‘,,,(k) 

3. Responsibility for the divergence of the kinetic energy integral lies with the 
principal terms of the expansion as r-00 (0.5), since, as the velocity field W,(X) is 
bounded, divergence may be observed only at the upper end of the interval, when r = 00. 
Taking this into consideration, let us consider the integral 

(3.1) 

where the seroth approximation is the Fourier transform of the principal term of the expansion 

alE,J txh 

Define a tensor 

&j,,(k) = *-J&,(P)& (k-p) dSp = 
13 

(a,,- m,m,)& - TrTJ 
d'p 

. (P’- 2md[(~ - P)'--e(s- a)1 
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m,=“‘. $-P. 
Tt=d, ki 

P It-PI 
ni = 

-r’ “0 = a 0, 4 

The ps axis points in the direction of the velocity v,,. Since 

la,,--{ml 1, ~6kl-mkmI iGi 

it follows that, in order to determine the type of singularity of Rug 
will suffice to consider the integral 

a(k) = 1 ((p* --W,)[(k -p)* --~~P(~,---P,)~~~~P 
K’ 

Let 

m = (sin 0 co9 cp, sin 0 sin cp. co9 0) 

n .= (sin O0 co9 qpo, sin 8, sin 'pO, co9 e,) 

pk = p cos 8, k, = kcos 8, 

Then (3.3) may be written as 

c, 2 p* + kZ - Ziokt, I 2p (io - kz,) z 

ck = -2kp1/(1 - ~~2) (i - a), I = cos 8, zO = cos eO 

as k-+0, it 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

If either k<U,Z,#O or l-.zO'((i, this will be valid at a distance in the wake 
region, since the latter is paraboloid in shape. After integration of (3;51 by parts, we get 

(3.7) 

Thus, the tensor B,,(k) has a logarithmic singularity as k-co. This improves on 
Finn's theorem, according to which the integral of the kinetic energy of the perturbed motion 
is divergent; Finn's theorem here results as a corollary of (3.7). Note that the expansion 
(3.6) involves not only a logarithmic term but also fractional (semi-integral) powers of k, 
a circumstance which should have significant influence on the expansion of the solution in a 
series of type (1.61, (1.7). To obtain such expansions it will be necessary to use the 
apparatus of fractional differentiation /13/. 

In order to get a betteridea of the behaviour of the tensor Rijkl (k) as k--cm, let 
us write it as 

(3.9) 

F (k, p) = (p? - 2iupJ [(k - p)” - 2ia (k, - PJI 

The quantity a(k) is just (3.3), so it has already been investigated. The represen- 
tation (3.8),(3.9) follows from (3.2) by using the properties of convolutions. 

Consider the tensor 

(3.10) 

If k<uo, z,#O, it follows from (3.6) that the number cp in the denominator of the 
integrand in (3.10) may be ignored. Integration with respect to q and x yields the expression 
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I = (l/2,1/2, O), v = (-1, -1, 2) 

Consider the tensor aijkl (k). Using the definition of CQ,~~ in (3.9), it can be shown 
that 

(3.12) 

As when calculating ail(k). consideration of (3.6) shows that if kg a, x0 #0 then 
the expression 

(3.13) 

may be simplified by neglecting cz 
Put 

an 

milkt = S wvkw% (3.14) 
0 

It can be shown that the only non-zero components mifkt will be m(tj) w7 w) W, m(c) CM 

(no summation over repeated indices:). Direct calculation gives 

mf/kt = M~ii) @djk + &k~Jt) + M(1k)6f16kt 

Ml, = M,, = 3(1 - zz)V8, M,, = a+, z = cos 0 

Ml, = M,, = (1 - P)%,I M,, = M,, = M,, = M,, = 1/2x' (1 - 2") 

(3.15) 

Integrating, we deduce from (3.13)-(3.15) that 

C&t (k) = [u(k) A(ij) + $ N(ij)] (‘%t6jk + '%k61t) + 

i U(k) A(jk) -t $- &jr)] '%$'kt + o (! ‘“1 

A,, = A,, = =I~, A,, = A,, = ‘I,, A,, = A,, = A,, = .A,, = A,, = 0 
N,, = N,, = - oJ8, N,, = N,, = -V,, N,, = N,, = N,, = N,, = 

1l2, N,, = 1 

Finally, from (3.1), (3.2), (3.8), (3.11), (3.12) and (3.16), we have 

00 

Bi5 (k) = (%)s vp a(k) G*,(a) + I 32nov~ Ki, (a) i- 0 (W 

G, = 
9a,a+ a*' 
8' 

G,,=G,,=-+ G,,=G,,=~ 

G,, = w., G,,= a82 

Ku = 
- I&l,'- 3a*'$ 4&J 5Ws 

9 a, K,, = K,, = - 4 

K,, = - 3a1'- ;a%%+ 4%= 

K,, = K,, = K,, = K,, = 0, K,, z.z 'I=+ a$-22a8= 

(3.16) 

(3.17) 

The second and last approximations to the non-linearity do not produce logarithmically 
divergent terms, but they all make a contribution of O(1) to the term. Hence we have the 
following expansion: 

Bij(k) = -& G,j (a)ln kPd9$ekru + -&& KiJ (a) f & i- 0 (k”*) (3.18) 
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where pij” is the renormalised mean momentum flux tensor of the perturbed motion: 

(3.19) 

4. As already pointed out, the asymptotic behaviour of the solution of the problem of 
the flow around a body may be obtained by asymptotic expansion of the Fourier transform Wi(k) 
of the velocity of the liquid at k +CO. Substituting the asymptotic representation of the 
tensor Bi,(k) (3.18) into Eq.(2.6) and using (2.9), (2.11), we get 

WI (k) = Al,,, (k) {a, - ik,G,, (a) (~I-c)-~v% (k) - ik,, lam,, + 
l/,nau-lv-aK,,n (a) + P,,~$]} - iklkma (b - ik,b,) + 0 (K’s) 

(4.1) 

Since the factor -ikj introduces a differentiation a/ax1 into the inverse transform, 
it follows that to obtain the asymptotic expansion of w, (x) we need only investigate the 
Fourier transforms of the functions A,, (k)a(k). The function A,,(k) is the Fourier trans- 
form of the velocity tensor Ei,(x). 

Let U,*(x) be the tensor whose Fourier transform is Ai1 (k)a(k). Using the formula 
for Ai, (k) we can write the tensor Uij(x) as 

ui, = hi,~u - av_r/axiaxi (4.2) 
where U(x) is the inverse Fourier transform of 

D (k) = a (k) [vka(k2 - 2iok.n,)]-' 

Hence follows the conclusion that 

LAU = x (x), L = A - 2u (II,, V) 

where x(x)is the inverse Fourier transform of 

h (k) = a (k)/v 

(4.3) 

Relation (3.3) for a(k) yields 

a(k) = 1 PpH(k)H(k-p), H(k) = ’ ks- Ziok.n, 

Hence, changing to inverse Fourier transforms, we get 

AF-22a(n,,VF)=-b(x), F(x)=g 

F (x) = & 5 H(k) e-ik,= dsk 

and 

x (x) = & 1 n (k) e-fk.x dak = (2nz)a F* (x) = G (4.4) 

It follows from (4.3) and (4.4) that 

Investigating 

AU = f, Af - 20 (no, vf) = ‘/gctW’/(vr”) (4.5) 

the solution of Eq.(4.5) by separation of variables, one can show that 

(4.6) 

where f. (x) is the solution of the homogeneous Eq.(4.5). The term fo (x) is not taken into 
consideration any more, since it is actually contained in the solution for the velocity field 
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in the terms corresponding to the expansion of the surface integral. 
In analogous fashion, 

pansion 
integrating the equation AU = f, we obtain the asymptotic 

Further terms of the series follow from the equation 

(s&Y,')' = (n - 1) [2sS,-, + (n - 2) &,I, n > 2 

(4.7) 

(4.8) 

which is recursively solvable. The solution of the homogeneous Laplace equation is omitted 
from (4.7), for the reason indicated above. Using formulae (4.21, (4.7), one can obtain an 
asymptotic expansion of the tensor Uil(x). 

We now turn to the Fourier transform Wi (k) (4.1). Again taking inverse transforms, 
we find an asymptotic expansion of the velocity field: 

ex- 

(4.9) 

The remainder term in (4.9) was in fact determined in /ll/, since it may in fact be 
obtained without the additional assumption adopted here that the vectors a and 
linear. 

v0 are col- 

It is of interest to develop an asymptotic formula for the vorticity field. We first 
observe that the "gradient terms" alJ,/=/axiaxI in Uij and dQi$asidxj in Eij (0.4), 
(4.2), make no contribution to rotv. The term f&AU is determined by formula (4.6), and 
A@ = --e-08/(4nvr). Hence one obtains the asymptotic expansion of the vorticity: 

(4.10) 

where eilk is the antisymmetric Levi-Civita tensor. 
It is characteristicthatall the terms of this expression decay exponentially -e-US 

outside the wake (S-S w). An estimate for the remainder term may be obtained by using a 
result from /11/, according to which the exponential decay of vorticity outside the wake obeys 
the law 0 _ cp (r) @o-e)*, as well as the estimate of (4.9) for the velocity remainder term; 
in the derivation it must be remembered that differentiation of the fundamental tensors Eij, 
U ij, etc., with respect to the coordinate contributes no more than the factor (S/T)I/' ((Vs)Z = 
2s/r)c to the estimate. For a rigorous justification of the remainder term in (4.10), one 
can use Propositions 2 and 3 from /ll/. From (4.10) one obtains the following refinement of 
the estimate for oi(x) derived in /II/: 

w(x) = &(Vs x a)? i_ O((1 + c~s)e-O~r-~ ln(ur)) (4.11) 

It should be noted that the asymptotic expansion presented in /14/ does not predict ex- 
ponential decay of vorticity outside the wake. This is because the asymptotic expression 
obtained for the second term of the expansion in /14/ is very coarse. Our present approach 
avoids this pitfall and yields all the terms of the asymptotic expression in terms of exact 
conservation integrals. 

We have thus obtained an asymptotic expansion for the velocity field for the laminar wake 
at some distance from a body of arbitrary shape immersed in a liquid, improving on the results 
of /ll, 14/. Explicit expressions have been obtained for the second and third terms of the 
asymptotic expansion, developed - like the first term (0.5) - in terms of conservation integrals. 
This makes the representation (4.9) universal and enables one to determine the three principal 
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terms of the asymptotic expansion for the wake at a distance, given the characteristics of 
the flow in the vicinty of the body, and conversely, to determine various specific 
characteristics pertaining to the body, given the velocity distribution in the wake. In 
particular, using the first three terms of the expansion one can obtain not only the force 
of drag but also the drag coefficient, which is of no little importance in certain practical 
applications. On the other hand, the fact that the principal terms of the expansion are 
expressed in terms of exact conservation integrals enables one to apply it not only to 
problems of flow past a body, which are characterized by a momentum sink, but also to 
various other hydrodynamic problems involving sources of momentum, such as the distribution 
of the stream in a wake, a stream inclined at an angle to the flow, the motion of a body with 
reactive thrust, etc. 
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